
© 2001 Visual C++ Developers Journal
Fawcette Technical Publications

Issue January 2001
Section essential tips
Main file name vc0101Ett9a.rtf

Screen capture file names vc0101ETf1.bmp
(use if we have space; no caption necessary;
delete fig ref if we don’t use the figure)

Notes to ME Nick, I confirmed with author that “PS” can be used

for “PS DLL.” All instances are OK as-is.—NG

Special instructions for Art dept. Please place the Send Your Tips box (pick-up from

VCDJ March).

Editor EN

Status Tech reviewed(t1), edited (t2); ar(t3); screen
cap removed (t4); final review by ng, rma, final
revs showing (t5); jl review (t6); ng review,
rma, spellcheck (t7); NF copyedit (t8); NG
review (t9a)

EN review t2

Character count

Package length 1 page

ToC blurb n/a

Overline:
E s s e n t i a l T i p s

Level: Beginner

VC++ 6.0

USE A TEMPLATE VC++ PROJECT FOR VISUAL AUTOMATED IDL

BUILDS

After writing your IDL file, you typically feed it to the Microsoft Interface Definition Language (MIDL) compiler to

generate header and C files as source files for the proxy-stub (PS) DLL and type library. You then must provide a DEF

file with the DLL entry points in it, and pass it all to a C compiler and linker to build the PS DLL. You should then

register your PS. If you’re using ATL, it runs MIDL on your IDL file and generates a makefile (*.mk) you can use to

compile the MIDL-generated files into a PS DLL. You still must register the PS manually for each module in your

application, then deploy and install all the proxies for your components.

 Instead, you can use a Visual C++ project to automate the whole process while enjoying the benefits of a visual

environment including the class wizard, the ability to copy files, and error messages that trace to your IDL code. Doing

so, you can view the IDL files as input source files and output a registered PS DLL. The IDL project should look and

behave like a normal project in VC++ (see Figure 1).

 Why automate? For one, you don’t want to trigger a massive PS DLL build and regenerate the header files if the

IDL hasn’t changed. For that, you need dependencies—something you take for granted in your other Visual C++

projects.

 Another reason to automate: You can have the project perform auto-registration at the end of the PS compilation

and copy the header files to other locations, reducing the likelihood of mistakes. If you forget to register the new PS

DLL, all hell could break loose if you run with the old PS or old header and TLB files.

 Need more reasons?

 Wizard support for adding new methods to the interfaces.

 You have, in one place, all the compilation warnings and errors for all IDL and C files. Error messages map directly

to the IDL source.

 One PS for your product even if it consists of many modules. This means a smaller memory footprint and easier

deployment (only one PS to install).

 One MIDL build environment—because you want all your IDL files compiled with the same MIDL switch set

(such as /Oicf).

 Ease of use—one step (literally one mouse click) from IDL to a registered and deployed PS.

 You can redirect the outputs—copy the headers, the PS file, and the TLB to shared locations.

 You can have consecutive GUIDs. You run uuidgen.exe once with this command line: uuidgen.exe -n500 >

guidlist.txt. Now you have 500 consecutive GUIDs for your project (Microsoft has all its GUIDs consecutively).

Having your entire project in one place when you open the Registry makes your life a lot easier. In the IDL

project, simply add the guidlist.txt to the project resources.

 The ability to use custom-named source files (dlldata.c is not a proper name).

 Every PS is a COM DLL. The template project is actually a VC++ DLL project, whose DEF file contains the PS

entry points and whose source files are MIDL outputs. All the IDL files have custom build steps that exclude them

from the build, except one IDL file (the “main” one) that has a custom build step to run a complex MIDL command

line to tweak MIDL as necessary. File-level dependencies provide VC++-like source file dependencies (if there’s no

change, there’s no build).

 View the MIDL-outputted C files as temporary files (like *.obj). You can have one IDL file per set of interfaces,

and one IDL file (the “main” one) that #includes them all—just like in a C++ project—and has the CLSID definitions

in the typelib’s scope. To add a new IDL file, simply include it and add it to the dependency. You can download a

template VC++ IDL project from the VCDJ Web site; see the Go Online box for details.
—Juval Lowy

Figure 1

Go Online

Use these DevX Locator+ codes at www.vcdj.com to go directly to these related resources.

VC0101 Download all the code for this issue of VCDJ.

VC0101ET Download the code for this article separately. This article’s code includes a template VC++ IDL project.

VC0101ET_T Read this article online. DevX Premier Club membership is required.

Want to subscribe to the Premier Club? Go to www.devx.com.

